If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35=4.9t^2
We move all terms to the left:
35-(4.9t^2)=0
We get rid of parentheses
-4.9t^2+35=0
a = -4.9; b = 0; c = +35;
Δ = b2-4ac
Δ = 02-4·(-4.9)·35
Δ = 686
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{686}=\sqrt{49*14}=\sqrt{49}*\sqrt{14}=7\sqrt{14}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-7\sqrt{14}}{2*-4.9}=\frac{0-7\sqrt{14}}{-9.8} =-\frac{7\sqrt{14}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+7\sqrt{14}}{2*-4.9}=\frac{0+7\sqrt{14}}{-9.8} =\frac{7\sqrt{14}}{-9.8} $
| 99=2x-3(-4x-5) | | 3x+2(x−5)=50 | | x-71=-15 | | x2+2x+1-x=x2+5 | | b+-8=14 | | (5x+7)=4x+3) | | m-6+1=0 | | (5y+9)+7.5=90 | | 7x3=5x+11 | | 5-(2x-1)/3=4 | | 5v–13=–21+7v | | 6x-2(3x-17)=142 | | 2/3+x=6/6 | | 349(4.80+x)=1000 | | `11x-6=60` | | 14x+15=7x+36* | | a3+5=10 | | -(6-2a)+8a=-4a+3(-3a-2) | | 2+1.25x=8 | | 5x-3/2=4x+8/4 | | x+53=36 | | -2(2m-4)=3(m+12) | | –7r−4=–5r | | 6(m+5)=7(m-6) | | -4+7x+8-3=8x-5 | | 48=3(x+4 | | -4+p9=-5 | | -27+x=82 | | 7x-12=4x+21 | | 4x–2=3x+1 | | 6x-18=42+9x | | -107=5x-6(-3x-9) |